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LETTER TO THE EDITOR

A theta-like sum from diffraction physics

M V Berry
H H Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK

Received 5 May 1999, in final form 24 May 1999

Abstract. For largen, graphs of the modulus of the sumSn(x) = (2n)!2−2n∑n
m=−n exp(iπxm2)

{(n−m)!(n +m)!}−1 exhibit self-similar structure.Sn(x) can be closely approximated by a theta
function near its natural boundary. An exact renormalization enables this function to be calculated
efficiently, and an approximate arithmetic renormalization explains the self-similarity. Atomic
diffraction experiments could enable the self-similarity to be detected in the laboratory.

Exact solution of Schr̈odinger’s equation (Berry 1998) shows that the sum

Sn(x) = (2n)!

22n

n∑
m=−n

exp(iπxm2)

(n−m)!(n +m)!
(1)

gives the amplitude of thenth-order beam of atoms diffracted by a ‘crystal of light’ (volume
grating) (Oberthaleret al 1996) of thicknessx, interacting with the atoms via a complex (that
is, non-Hermitian) potential (proportional to exp(iKy)) (Keller et al 1997), when the beam is
incident normally on the crystal.Sn(x) has the special values

Sn(0) = 1 Sn(1) = 0 (2)

and the symmetries

Sn(x + 2) = S∗n(−x) = Sn(x) (3)

so that it suffices to study only the range 06 x 6 1. Of special interest is the behaviour of
Sn(x) asn→∞. Computations (figure 1) suggest that in this asymptotic limit self-similarity
emerges, and my purpose here is to explain it.

The terms in (1) decay rapidly as|m| increases, because, from Stirling’s formula,

1

(n−m)!(n +m)!
≈ exp(2n)

2πn2n+1
exp(−m2/n) (n→∞, |m| � n). (4)

This shows that the significant terms are those with|m| < √n, so thatSn(x) has structure
down to scales1x ∼ 1/n. Thus

Sn(x) ≈ f (x, 1/πn) (5)

wheref (x, y) is a Jacobi theta function (Abramowitz and Stegun 1972) which it is convenient
to write as

f (x, y) = √y
∞∑

m=−∞
exp(iπxm2) exp(−πym2)

= √yθ3(0, exp{iπ(x + iy)}). (6)
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Figure 1. Emergent self-similarity in the graph of|Sn(x)| versusx asn increases. (a) n = 5, (b)
n = 10, (c) n = 20, (d) n = 50, (e) n = 100, (f ) n = 500.

Figure 2. Comparison of|Sn(x)| (full curves) with|f (x, 1/πn)| (equation (5)) (dashed curves).
(a) n = 1, (b) n = 2, (c) n = 3, (d) n = 5.

As figure 2 shows, (5) is an excellent approximation, even whenn is not large.
Therefore we seek to understandf (x, y) for small y (largen), that is, near the natural
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boundary of the theta function, where the convergence of the sum in (6) is poor. Clearly,
f (x, y) has structure down to a scale1x ∼ y. To explore this structure, we employ several
tools from the extensive literature on theta functions (see, in particular, Marklof 1990a, b and
references therein). Many of these tools are well known; our aim here is the modest one of
using them to explain the self-similarity observed in computations.

Note first the symmetries (cf (3))

f (x + 2, y) = f ∗(−x, y) = f (x, y) (7)

that allowx to be reduced to the interval 06 x 6 1, and the reflection identity (based on
(−1)m

2 = (−1)m)

f (1− x, y) = √y
∞∑

m=−∞
exp(−iπxm2) exp(−πym2)(−1)m

= f ∗(4x, 4y)− f ∗(x, y) (8)

that enablesf for x near 1 to be evaluated in terms off for x near 0.
The theta-function identity (a special case of the Poisson sum formula, Lighthill (1958)

transforms (6) into

f (x, y) =
√
y + ixf ∗

(
x

x2 + y2
,

y

x2 + y2

)
. (9)

Using the symmetries (7), and defining

k(x, y) ≡
[

x

x2 + y2

]
(10)

(where here and hereafter [u] will denote the integer part ofu), and the map

M : x → u(x, y) =


x

x2 + y2
(mod 1) (k(x, y) even)

1− x

x2 + y2
(mod 1) (k(x, y) odd)

y → v(x, y) = y

x2 + y2

(11)

we obtain the fundamentalrenormalization transformation

f (x, y) =
√
y + ixK1+k(x,y)f (u(x, y), v(x, y)) (12)

whereK denotes the operation of complex conjugation.
Applied tox = 0, (12) gives

f (0, y) = √yf (0, 1/y) =
∞∑

m=−∞
exp(−πm2/y)→ 1 as y → 0 (13)

and forx = 1, with (8),

f (1) =
√

4yf (0, 1/(4y))−√yf (0, 1/y)

=
∞∑

m=−∞
{exp(−πm2/(4y))− exp(−πm2/y)} → 0 as y → 0. (14)

Convergence of (6) can be improved by repeatedly applying the renormalization (12),
since whenr ≡ √(x2 + y2) < 1 the value ofy increases under the mapM. M divides the
strip 06 x 6 1, 06 y 6 ∞ into zones defined by the value ofk(x, y) (figure 3): the zone
k lies between neighbouring semicircles with radii 1/(2k), centred onx = 1/(2k). Because
y increases underM, any initial point (x, y) must eventually reach the zonek = 0. The
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Figure 3. Zones corresponding to different values ofk
in the mapM defined by (11).

Figure 4. The shaded points are those satisfying (15),
that map into thek = 0 zone under one application ofM.

quarter-circler = 1 divides this zone into pairs of points(x, y) and(x, y)/r2 that are stable
period-2 orbits to which any initial point not in the zonek = 0 is attracted byM. For points
in thek = 0 zone, convergence is slowest on the circler = 1, where the terms of the series
(6) are exp{−πm2√(1− x2)}; this is poor nearx = 1, but then the reflection law can be
used, giving a series with terms exp{−πm2√((1 +x)/(1− x))/8}, that converges faster than
without reflection ifx > 7

8 (even whenx = 7
8—the worst convergence of all—the terms are

exp{−πm2(
√

15)/8) = exp{−1.52m2}).
Most points not in thek = 0 zone land there after one application ofM. These are the

points (figure 4) satisfying(
x − 1

2

)2

+ y2 <
1

4

(
x − k + 1

2

k(k + 1)

)2

+ y2 >

(
1

2k(k + 1)

)2

(k = 1, 2, . . .).

(15)

They constitute a fraction 4− π2/3 = 0.7103 of the area in the zonesk > 1. The remaining
points map into thek = 0 zone after more than one application ofM. Points close to thex-axis
require many applications, and it is these, withy � 1, that hide the self-similarity we seek to
understand.

Wheny � 1, we can define

q(x) =
[

1

x

]
(16)

andM defined by (11) can be approximated by

N : x → ξ(x) =


1

x
(mod 1) (q(x) even)

1− 1

x
(mod 1) (q(x) odd)

y → η(x, y) = y

x2
.

(17)

This generates theapproximate renormalization

f (x, y) ≈ exp( 1
4iπ)
√
xK1+q(x)f (ξ(x), η(x, y)). (18)

For the modulus|f (x, y)| this becomes

|f (x, y)| ≈ √x|f (ξ(x), η(x, y))|. (19)
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N is closely related to the Gauss map for continued fractions; its ergodic properties have
been studied in detail (Berry and Goldberg 1988, Marklof 1999a) in connection with the
renormalization analysis not only of theta functions but also of the finite sumsg(L, x) =∑L

m=1 exp(iπxm2) (there, the emphasis was on the curves—‘curlicues’—drawn in the complex
g plane asL increases for fixedx; the curves depend sensitively on the arithmetic nature ofx).

To expose the self-similarity, we study the interval

1

2m + 1
6 x 6 1

2m− 1
(20)

by writing

x = 1

2m− u (−16 u 6 +1). (21)

Foru > 0, q(x) = 2m− 1 is odd; foru 6 0, q(x) = 2m is even. Application of (19) leads to∣∣∣∣f ( 1

2m− u, y
)∣∣∣∣ ≈ 1√

2m− u |f (u, (2m− u)
2y)|. (22)

This shows that the graph of|f (x, y)| in the unitx interval is contained in either half of the
interval (20), which is 4m2− 1 times smaller, with the graph in the smaller interval calculated
for ay value that is 4m2 times smaller.

An immediate application of this renormalization, together with (13) and (14), gives∣∣∣∣f ( 1

2m
, y

)∣∣∣∣ ≈ 1√
2m

f

(
1

2m + 1
, y

)
≈ 0. (23)

As figure 5 shows, this reproduces|f | accurately over a range ofm values that gets larger as
y gets smaller.

Iteration of the approximate renormalizationn + 1 times enables the graph to be reduced
to the smaller intervals

x0(u) = 1

2m0 +
ε1

2m1 +
ε2

2m2 + · · · εn

2mn − u

(−16 u 6 +1, εm = ±1). (24)

Defining the successively mappedx values as

xs = 1

2ms +
εs+1

2ms+1 + · · · εn

2mn − u

(25)

the renormalization gives

|f (x0(u), y)| ≈
√√√√ n∏

s=0

xs(u)

∣∣∣∣f(u, y/ n∏
s=0

xs(u)
2

)∣∣∣∣. (26)

The approximation is valid while they value on the right-hand side is much smaller than
unity. This corresponds to renormalizing down to, but not beyond, ann value corresponding
to the fine scale1x ∼ y. For largern, the exact renormalization (11) and (12) must be used,
attracting to the period-2 orbit in thek = 0 zone.

Figure 6 demonstrates the efficiency of the approximate renormalization for three nested
magnifications of the original graph, corresponding tom0 = 3,m1 = 2,m2 = 2, ε1 = −1,
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Figure 5. Test of approximate renormalization for (a)
y = 0.02, (b) y = 0.01, (c) y = 0.005. Dots: exact
values of|f |; full lines: rhs of (23). The renormalization
should fail when the width of thex-interval (2) equals
the fine scale1x ∼ y of the graph, that is when
m ∼ 1/

√
(2y), giving m = 5, 7.1 and 10 for (a), (b)

and (c), respectively.

Figure 6. Self-similarity, illustrated by comparing
magnifications of graphs of the exact|f (x, y)| (full
curves) with the predictions of the approximate
renormalization (27) (dashed curves), fory = 0.000 05.
The magnified intervals are (a) 1

7 = 0.142 8576 x 6
1
5 = 0.2, (b) 5

29 = 0.172 4146 x 6 3
17 = 0.174 442,

(c) 13
75 = 0.173 333 6 x 6 21

121 = 0.173 444.
(In (a) and (b) the exact and approximate curves are
indistinguishable.)

ε2 = +1, giving the predictions∣∣∣∣f ( 1

6− u, y
)∣∣∣∣ ≈ 1√

6− u |f (u, (6− u)
2y)| (27a)∣∣∣∣∣∣∣∣f

 1

6− u− 1

4− u
, y


∣∣∣∣∣∣∣∣ ≈

1√
23− 6u

|f (u, (23− 6u)2y)| (27b)

∣∣∣∣∣∣∣∣∣∣∣∣
f


1

6− u− 1

4− u +
1

4− u

, y



∣∣∣∣∣∣∣∣∣∣∣∣
≈ 1√

98− 23u
|f (u, (98− 23u)2y)|. (27c)

In spite of the self-similarity, the graph of|f (x, y)| in the limit y → 0 is not fractal in the
sense of being a continuous nondifferentiable curve with dimension 1< D 6 2. This can be
seen from the following explicit formula for values off wheny = 0, that follows from the
renormalization (or averaging the familiar Gauss sums) and is a special case of corollary 3.3
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Figure 7. Graph of|f (x, 0)| from equation (28) including allp/q with q 6 200.

in Marklof (1999b):

|f (p/q, 0)| = 1√
q

x = p/q (p or q even)

= 0 x = p/q (p, q both odd)

= 0 x irrational. (28)

This is shown in figure 7; all previous graphs of|f | and|S| can be understood as smoothings
of this picture.

Another way to guess that the limiting curve is not continuous asy → 0 is to note
from (6) that the coefficient of the oscillating exponential exp(iπxm2) is roughly constant for
|m| < 1/

√
y, beyond which it decays rapidly. Therefore the limiting power spectrum is that

of a series with constant coefficients and frequenciesω ∼ n2, namely dn/dω ∼ ω−β , where
β = 1

2, from which the ruleD = (5−β)/2 (Orey 1970, Berry and Lewis 1980) gives, formally,
D = 9

4, indicating that the limiting graph is not only nondifferentiable but noncontinuous.
Finally, we note that the complex potential giving rise to the diffraction amplitudes (1) has

been realized in the laboratory (Kelleret al 1997), raising the possibility that the self-similar
structures explored here could be seen experimentally.

I thank J Marklof for kindly reminding me of the result (28), and D Zagier for helpful remarks.
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